Search results for "Cartilage tissue engineering"

showing 7 items of 7 documents

Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering

2020

As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…

0106 biological sciences3D bioprintingMaterials scienceTissue EngineeringTissue Scaffolds010401 analytical chemistryBioprintingHydrogelsNanotechnologyGeneral MedicineHard tissue01 natural sciencesApplied Microbiology and BiotechnologyCartilage tissue engineeringBone tissue engineering0104 chemical scienceslaw.inventionCartilageBody organslaw010608 biotechnologyPrinting Three-DimensionalSelf-healing hydrogelsMolecular MedicineCellular MorphologyBiotechnology Journal
researchProduct

Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds

2017

[EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chond…

0301 basic medicineShort CommunicationsBiomedical EngineeringMedicine (miscellaneous)Human plateletCartilage tissue engineeringBiomaterialsChitosanlcsh:Biochemistry03 medical and health scienceschemistry.chemical_compoundTissue engineeringActivated platelet-rich plasmamedicinelcsh:QD415-436Cartilage repairPorosityCartilageRegeneration (biology)Stabilized porous chitosantechnology industry and agricultureAnatomyChondrogenesisequipment and supplies030104 developmental biologymedicine.anatomical_structurechemistryMAQUINAS Y MOTORES TERMICOSTERMODINAMICA APLICADA (UPV)Biomedical engineering
researchProduct

Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources

2022

In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organiza…

Biomaterials3D bioprintingland sourcesBiomedical Engineeringcartilage tissue engineeringbioinkmarine sourcesadditive manufacturing
researchProduct

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplement…

2018

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

Malecartilage tissue engineering02 engineering and technologyBiochemistrylaw.inventionExtracellular matrixX-Ray DiffractionlawOrthopedics and Sports MedicineGlycosaminoglycansExtracellular Matrix Proteins0303 health sciencesSettore ING-IND/24 - Principi Di Ingegneria ChimicaCalorimetry Differential ScanningTissue ScaffoldsChemistryHyaline cartilageTemperatureSettore ING-IND/34 - Bioingegneria IndustrialeCell DifferentiationMiddle AgedPhenotypemedicine.anatomical_structureBioactive glassFemaleAdultPolyesters0206 medical engineeringType II collagenNoseChondrocyteYoung Adult03 medical and health sciencesChondrocytesRheumatologymedicineHumanspoly(L)lactic acidCollagen Type IIMolecular BiologyAggrecan030304 developmental biologyCartilagenasoseptal chondrocyteCell BiologyChondrogenesis020601 biomedical engineeringBioactive glass 1393Gene Expression RegulationBiophysicschondrogenesiGlassCollagen Type X
researchProduct

High resolution X-ray tomography – three-dimensional characterisation of cell–scaffold constructs for cartilage tissue engineering

2014

AbstractSynchrotron radiation based microcomputed tomography (SR-μCT) has become a valuable tool for the structural analysis of different types of biomaterials. This methodology allows the non-destructive investigation of specimens in their three-dimensional context. In the present paper, articular cartilage is taken as an exemplary tissue to demonstrate the suitability of the SR-μCT method for the investigation of biomaterials for different tissue engineering approaches. Thus, a biodegradable scaffold for cartilage tissue engineering in different modifications was analysed. Using enhanced phase contrast imaging, it was possible to demonstrate single cells without further metal staining. Th…

Materials scienceMechanical EngineeringCartilagePhase-contrast imagingX-rayBiomaterialContext (language use)Condensed Matter PhysicsCartilage tissue engineeringmedicine.anatomical_structureTissue engineeringMechanics of MaterialsmedicineGeneral Materials ScienceTomographyBiomedical engineeringMaterials Science and Technology
researchProduct

Evaluation of a Cell-Free Collagen Type I-Based Scaffold for Articular Cartilage Regeneration in an Orthotopic Rat Model.

2020

The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the…

Settore BIO/17 - IstologiaPathologymedicine.medical_specialtyScaffoldcartilage tissue engineeringcollagen I-based scaffold02 engineering and technologySOX9lcsh:TechnologyArticle03 medical and health sciencesIn vivoarticular cartilage lesionmedicineGeneral Materials Sciencelcsh:Microscopycartilage regenerationAggrecan03 Chemical Sciences 09 Engineering030304 developmental biologylcsh:QC120-168.850303 health scienceslcsh:QH201-278.5Chemistrylcsh:TCartilageRegeneration (biology)021001 nanoscience & nanotechnologymusculoskeletal systemmedicine.anatomical_structurelcsh:TA1-2040ImmunohistochemistryArticular cartilage lesion; Cartilage regeneration; Cartilage tissue engineering; Collagen i-based scaffold; Orthotopic implantationlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem cellorthotopic implantation0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971
researchProduct

Characterization of oriented protein-ceramic and protein-polymer-composites for cartilage tissue engineering using synchrotron μ-CT

2007

Abstract In this paper we report on the synthesis of three different gelatine based scaffold materials for the reconstruction of articular cartilage defects. The first scaffold design is based on an unmodified, oriented gelatine network, while the second design further comprises an attached inorganic hydroxyapatite layer and the third design includes poly(l-lactide) microspheres as a model material for future drug-release applications. All three scaffold designs were characterized and imaged using synchrotron μ-CT, obtaining a complete volumetric reconstruction of a previously defined sample region. Furthermore, two unmodified scaffolds were cultivated for one week with porcine chondrocytes…

chemistry.chemical_classificationScaffoldMaterials scienceMetals and AlloysPolymerCondensed Matter PhysicsSynchrotronCartilage tissue engineeringlaw.inventionCharacterization (materials science)chemistryTissue engineeringlawvisual_artMaterials Chemistryvisual_art.visual_art_mediumCeramicPhysical and Theoretical ChemistryComposite materialLayer (electronics)Biomedical engineeringInternational Journal of Materials Research
researchProduct