Search results for "Cartilage tissue engineering"
showing 7 items of 7 documents
Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
2020
As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…
Human platelet-rich plasma improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds
2017
[EN] The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chond…
Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources
2022
In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organiza…
Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplement…
2018
Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…
High resolution X-ray tomography – three-dimensional characterisation of cell–scaffold constructs for cartilage tissue engineering
2014
AbstractSynchrotron radiation based microcomputed tomography (SR-μCT) has become a valuable tool for the structural analysis of different types of biomaterials. This methodology allows the non-destructive investigation of specimens in their three-dimensional context. In the present paper, articular cartilage is taken as an exemplary tissue to demonstrate the suitability of the SR-μCT method for the investigation of biomaterials for different tissue engineering approaches. Thus, a biodegradable scaffold for cartilage tissue engineering in different modifications was analysed. Using enhanced phase contrast imaging, it was possible to demonstrate single cells without further metal staining. Th…
Evaluation of a Cell-Free Collagen Type I-Based Scaffold for Articular Cartilage Regeneration in an Orthotopic Rat Model.
2020
The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the…
Characterization of oriented protein-ceramic and protein-polymer-composites for cartilage tissue engineering using synchrotron μ-CT
2007
Abstract In this paper we report on the synthesis of three different gelatine based scaffold materials for the reconstruction of articular cartilage defects. The first scaffold design is based on an unmodified, oriented gelatine network, while the second design further comprises an attached inorganic hydroxyapatite layer and the third design includes poly(l-lactide) microspheres as a model material for future drug-release applications. All three scaffold designs were characterized and imaged using synchrotron μ-CT, obtaining a complete volumetric reconstruction of a previously defined sample region. Furthermore, two unmodified scaffolds were cultivated for one week with porcine chondrocytes…